

ASSAP Issue # SP6: Initial Initial Thoughts on Dual Link Reception of ADS-B

MITRE/CAASD Roxaneh Chamlou Aug 2006

Outline

- Problem Description
- Background Information
- Discussion of Alternatives
- Assumptions and Conclusions

Problem Description

- One proposed function in the strawman ASSAP functional architecture is Source-Level Tracking for ADS-B/ADS-R
 - Establish tracks from ADS-B/ADS-R and TIS-B sources separately (Track Generation).
 - Note: this is an extension of the statement in the ASA MASPS which did not explicitly call out ADS/R
 - Establish tracks from ADS-B and TIS-B traffic reports (Section 2.4.3.4, Page 46).

Problem Description (cont'd)

- Dual equipped ownship can receive both ADS-B (direct) and ADS-R (rebroadcast) reports on the same target. Consider two alternatives:
 - Fusion of ADS-B and ADS-R reports.
 - Selection of ADS-B as the primary source and acceptance of ADS-R for track update only when ADS-B reception has ceased for x seconds.

Illustration of Problem:

Background Information

• First, we have establish that ADS-B, TIS-B, ADS-R `services can be distinguished by the receiver subsystem. The following table suggest what information could be used for this distinction. (Verify and complete later.)

Link Type	UAT		1090ES	
	Address Qualifier	SIL	DF Type	SIL
Service Type				
TIS-B	2 (ICAO ID)	0	DF18, CF2, IMF0 (fine, ICAO)	0
			DF18, CF2, IMF1 (fine, Track ID)	
	3 (Tracker ID)	0	DF18, CF3, IMF0 (coarse, ICAO)	0
			DF18, CF3, IMF1 (coarse, Track ID)	
ADS-R	2 (ICAO ID)	> 0	DF18, CF6, IMF0 (ICAO)	> 0
	? (Non ICAO)		DF18, CF1 (non ICAO)?	
	? (anonymous)		DF18, CF6, IMF1 (anonymous)	
ADS-B	0 (ICAO ID)	> 0	DF17	> 0
	1 (Temporary ID)	> 0	DF1 7	> 0
	4 (Surface)	> 0	DF17	> 0
	5 (Fixed)	> 0	DF17	> 0

Background Information (cont'd)

- The ground spec will most likely have ADS-R requirement on:
 - Latency
 - Compensation for latency in the ADS-R state vector (e.g., the position must be extrapolated to the time of rebroadcast transmission)
 - => ADS-R reports are providing extrapolated position information at the rebroadcast time.

Discussion of Alternatives

• Fusion Alternative: Update the ADS-B source level tracker with either ADS-B or ADS-R (that arrives later and is compensated for the latency).

 Source Selection Alternative: Do not update with ADS-R unless ADS-B has not been received for x seconds.

Assumptions and Conclusions

Assumption

- Both alternatives assume the address in the ADS-R message is not altered from the original ADS-B message (i.e., ADS-B and ADS-R are correlated by their address).
 - Investigate validity of assumption. For example, what happens when the ADS-B address is anonymous in 1090ES and is rebroadcast over UAT
 - If rebroadcast can alter the address, a spatial correlation between ADS-B and ADS-R may be required rather than a simple address matching scheme.

Conclusion

- Tentatively: dual equipped A/V can operate conflict free. Two alternatives seems viable:
 - Fusion of ADS-B and ADS-R.
 - Selection of ADS-B as the primary source and acceptance of ADS-R for track update only when ADS-B reception has ceased for x seconds.
- The tradeoff is between processing load and algorithm complexity.

